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Abstract

In modern turbo machines such as aircraft jet engines, structural contacts between the casing and bladed disk may occur

through a variety of mechanisms: coincidence of vibration modes, thermal deformation of the casing, rotor imbalance due

to design uncertainties to name a few. These nonlinear interactions may result in severe damage to both structures and it is

important to understand the physical circumstances under which they occur. In this study, we focus on a modal

coincidence during which the vibrations of each structure take the form of a k-nodal diameter traveling wave characteristic

of axi-symmetric geometries. A realistic two-dimensional model of the casing and bladed disk is introduced in order to

predict the occurrence of this very specific interaction phenomenon versus the rotation speed of the engine. The equations

of motion are solved using an explicit time integration scheme in conjunction with the Lagrange multiplier method where

friction is accounted for. This model is validated from the comparison with an analytical solution. The numerical results

show that the structures may experience different kinds of behaviors (namely damped, sustained and divergent motions)

mainly depending on the rotational velocity of the bladed disk.

r 2008 Published by Elsevier Ltd.

1. Introduction

In rotordynamics, nonlinear coupling forces between the rotating and surrounding stationary parts can
result in unexpected significant displacements and subsequent high stresses leading to structural failure. More
specifically in aircraft engines, several mechanisms can contribute to such rotor-to-stator interactions and are
usually classified in three main categories:
(1)
 interacting forces due to variations of fluid pressure without structural contact;

(2)
 interacting forces reduced to a unique contacting point along the circumference of both structures;

(3)
 interacting forces induced by multiple simultaneous contacting points at different locations along the

circumference.
ee front matter r 2008 Published by Elsevier Ltd.
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The first category comprises phenomena such as stall flutter, forced response due to aerodynamic
surroundings or acoustic resonance [1]. This category is out of the scope of the present paper. The second
category is more or less well understood. The related works usually analyze the vibrations of a rotating shaft
with a non-uniform cross-section supported by journal bearings where different levels of nonlinearity are
considered: oil-film pressure field implicating nonlinear hydrodynamic [2,3], direct rub and friction forces,
viscous damping forces, non-constant angular velocity to name a few. These studies mainly necessitate small
models with a few coupled nonlinear second-order differential equations suitable for the investigation of a real
shaft behavior. Nonlinear and chaotic behaviors as different as dry whip, oil whip or whirling motion are
highlighted [4,5]. On the other hand, the third category is an emerging field of research and is more specific to
aircraft engines like the one depicted in Fig. 1. By virtue of the need of high machine efficiency, it became
apparent that more realistic descriptions of fully flexible structures, principally bladed disks and outer casings,
within a contact mechanic framework, was required. This efficiency, simply defined as the ratio of energy
output to energy input, strongly depends on the clearance between the rotating and stationary components:
the wider the clearance, the less efficient the machine. Higher efficiency is achieved by reducing this tip
clearance in order to avoid aerodynamic losses. Unfortunately, an obvious consequence is a significant
increase in the possibility of rub between the two components with origins such as gyroscopic effect under
certain operating conditions, maneuvering loads during take-off and landing of the aircraft, apparition of a
rotor imbalance due to design uncertainties, bird strikes or blade-off, vibrations due to aerodynamic
excitations, outer casing distortion caused by a temperature gradient. Depending on the nature of the induced
contact, theses interactions can give rise to either (1) very short and transient dynamic responses encountered
in crash analysis for example or (2) long lived phenomena characterized by initially intermittent soft contacts
that can lead to the excitation of the mode shapes of the structures [6], undesirable large amplitudes and very
high stress levels into the structures.

In this paper, our emphasis will be in a better understanding of a very specific kind of contact interaction
that can occur in aircraft engines and which belongs to the second class mentioned above. It has been named
‘‘traveling wave speed coincidence’’ in a pioneering work [7] dealing with this phenomenon and rich in insight.
This very well-documented research includes an extensive bibliography on rotordynamics in general, addresses
the aforementioned problem in which an analytical condition of interaction is determined [8], and suggests a
solution method. Finally, experimental and numerical results are compared and show good agreement. New
results were given in Ref. [9] and the present paper provides further developments.

Starting from simple considerations on structures that are rotationally periodic or exhibit axi-symmetry, it is
proved that k-nodal diameter rotating modes (see Appendix A for discussion) that separately propagate in the
Fig. 1. An industrial jet-engine.
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bladed disk and casing, may interact through direct contact due to the small tip clearance. This modal
interaction (or traveling wave speed coincidence as suggested in Ref. [7]) can be quickly described as a
geometric matching between these traveling k-nodal diameter modes, forward in the casing and counter-
rotating in the bladed disk (see Appendix A for the explanation of these directional terms), that display
the same absolute traveling velocity due to the rotation of the bladed disk. As a combination of self-
excited mode shapes, high tangential velocity of the blade-tips (from 400 to 600m/s) and stabilizing or
destabilizing rub [10], this nonlinear interaction may lead to devastating effects like the destruction of
the engine. It is therefore important to get a better description of the phenomenon and give accurate
predictions of the behavior with respect to a series of mechanical parameters of interest. To this end, a
numerical tool, based on two-dimensional (2D) elastic outer casing and bladed disk, has been developed. It
combines a low computational cost with a fairly realistic modeling. Each structure is represented in terms of its
two k-nodal diameter vibration modes which allow for traveling wave motions to occur. The kinetic energy of
the bladed disk is transformed into vibratory energy through direct contact and may result in a case of
interaction. In this numerical tool, in conjunction with the Lagrange multiplier method where friction is
accounted for, the governing equations are solved using a time-stepping method based on the explicit central
differences scheme more relevant to transitional dynamics dealing with contact constraints [11]. Attention is
given to a set of parameters such as angular velocity of the rotor, friction coefficient, number of nodal
diameters, number of blades, initial curvature of the blades. Comparison with analytical derivation is also
provided.

2. Modal interaction definition

This section presents the interaction phenomenon of interest which can only occur for a certain class of
structures featuring cyclic-symmetry and/or axi-symmetry is described.

2.1. Cyclic symmetry

A reference sector is defined as a blade plus the corresponding segment of the disk. An aircraft engine
bladed disk composed of N sectors is obtained by N � 1 repeated rotations of such a reference sector through
the fundamental interblade phase shift angle a ¼ 2p=N. The N identical sectors form a perfectly tuned circular
system said to show rotational periodicity or cyclic symmetry [12]. Typically, the finite element analysis of such
a structure results in circulant mass and stiffness matrices. The associated eigenproblem in physical
coordinates u is written as [13]

Yu ¼ 0 (1)

with

Y ¼

Y0 Y1 0 � � � 0 YT
1

YT
1 Y0 Y1 0 � � � 0

. .
. . .

. . .
.

. .
. . .

. . .
.

0 � � � 0 YT
1 Y0 Y1

Y1 0 � � � 0 YT
1 Y0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
. (2)

In Eq. (2), the number of blocks on the diagonal is equal to the number of sectors and Yi ¼ Ki � o2Mi for
i ¼ ½0; 1�. The stiffness matrix K0 and the mass matrix M0 are derived from the finite element model of a
fundamental sector, while matrices M1 and K1 are built by considering displacement compatibility between
adjacent sectors. In the context of symmetrical components within block-circulant matrix theory, it can be
shown that the projection of Y onto the real-cyclic coordinates is block diagonal [14]. Each block is associated
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with a parameter k and has the partitions

eYk ¼
Y0 þ Y2 cos ka Y3 sin ka

�YT
3 sin ka Y0 þ Y2 cos ka

" #
, (3)

where Y2 ¼ Y1 þ YT
1 and Y3 ¼ Y1 � YT

1 . Consequently, the initial eigenvalue problem (1) reduces to a series of
smaller eigenvalue problems mostly depending on k. By noting x, the counterpart of the physical displacement
vector u in real-cyclic coordinates, the series of new eigenvalue problems becomes (k ¼ 0 is not of interest to
our study)

eYkxk ¼ 0; k ¼ 1; . . . ;K with K ¼

N � 1

2
if N is odd;

N � 2

2
if N is even:

8>><>>: (4)

The skew-symmetric structure of eYk gives rise to mode pairs with identical natural frequencies [15]. By
partitioning the eigenvector matrix as xk ¼ ½xc;k; xs;k�T, both respective modes can be expressed as

xk
o;1 ¼

xc;k

xs;k

" #
o;1

¼
x

c;k
o;1

x
s;k
o;1

0@ 1A and xk
o;2 ¼

xc;k

xs;k

" #
o;2

¼ �
�x

s;k
o;1

x
c;k
o;1

0@ 1A. (5)

Their shapes are similar and rotated around the axis of symmetry by p=ð2kÞ. Once known in real-cyclic
coordinates, they can be transformed back into physical coordinates for the nth sector by using

un ¼

ffiffiffiffiffi
2

N

r XK

k¼1

½xc;k cosðn� 1Þkaþ xs;k sinðn� 1Þka� þ
1ffiffiffiffiffi
N
p x0 þ

ð�1Þn�1ffiffiffiffiffi
N
p xN=2. (6)

In Eq. (6), the last term exists only if there is an even number of sectors. This equation provides a geometrical
interpretation of k, or number of nodal diameters depicted in Fig. 2 for k ¼ 3: a sinusoidal repartition of the
displacements along each spatial direction.

Both shapes of sector n along the k-nodal diameter mode pair are given in physical coordinates by
combining Eqs. (5) and (6) to get

u1n ¼ xc;k cosðn� 1Þka� xs;k sinðn� 1Þka,

u2n ¼ xs;k cosðn� 1Þkaþ xc;k sinðn� 1Þka. (7)
Fig. 2. 3-nodal diameter modes of (a) a jet engine casing and (b) a bladed disk.
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It is then possible to combine these two modes into forward (f ) and backward (b) rotating modes at angular
frequency o by multiplying by the appropriate time-dependent functions

uf
nðtÞ ¼ u1n cosotþ u2n sinot,

ub
nðtÞ ¼ u1n cosot� u2n sinot. (8)

The group velocity of such waves, which is of great interest in this work, is well known to be the angular
frequency o divided by the wavenumber k (or number of nodal diameters in our case)

n ¼
o
k
. (9)

2.2. Axi-symmetry

Structures featuring perfect axi-symmetry, such as outer casings, can be viewed as limit cases of rotationally
periodic structures: the number of sectors tends to infinity. Therefore, they share the same properties and have
degenerate orthogonal pairs as well [16]. These mechanical characteristics are intrinsically connected to the
structural invariance with respect to the revolution axis of their geometric shape. Any mode can be subjected
to a rotation and is necessarily a linear combination of two orthogonal ‘‘fundamental’’ modes with similar
shape and equal frequency.

As an important consequence, any linear displacement of a structure featuring cyclic-symmetry or
perfect axi-symmetry can be seen as a linear combination of k-nodal diameter forward and backward rotating
modes [12].

2.3. Interaction phenomenon: an analytical approach

Coming back to Eq. (9), the group velocity of a k-nodal diameter rotating mode propagating in
a motionless structure is given by �o=k in a stationary frame, depending on the direction of propagation.
Accordingly, for a rotating structure observed in a stationary reference frame, the rotational velocity O
(selecting the counter-clockwise direction as positive) has to be accounted for. The propagation velocity
becomes then Oþ o=k for the corotating mode and O� o=k for the counter-rotating mode. Frequencies of
rotating structures are usually O-dependent due to centrifugal stiffening. In our study, this centrifugal
stiffening is neglected.

In the following, the two natural frequencies respective to the chosen double modes are denoted oc for the
casing and obd for the bladed disk.

For a certain angular velocity of the bladed disk, the rotating modes in the bladed disk may travel at the
same absolute speed as the forward rotating mode in the casing. Furthermore, if both structures vibrate at
their own natural frequency, this certain angular velocity becomes a critical velocity for which two cases of
traveling wave coincidence (equally said rotating mode coincidence) can be stated as plotted in Fig. 3, in other
words

oc

k
¼ O�

obd

k
. (10)

Taking into account physical considerations on the direction of the contact and friction forces between the
two structures—forward in the casing and backward in the bladed disk due to the chosen direction of rotation,
and invoking the action/reaction principle of Newton’s third law (the contact efforts exerting on the casing will
have an opposite direction to their counterparts exerting on the bladed-disk), only one of these equations can
be considered as dangerous,

oc ¼ kOct � obd. (11)

This condition of interaction shows that there exists a unique critical speed Oct for which, in theory, both
structures are driven in resonance by the contact forces. From a stationary frame, the forward rotating mode
in the casing propagating at oc=k geometrically matches with its counter-rotating counterpart in the bladed
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disk propagating at Oct � obd=k as shown in a very simple manner in Fig. 4. Consequently, the angular
velocity Oct must be avoided because this bi-resonant phenomenon in oc and obd may theoretically cause
undesired large amplitude vibrations.
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Inevitably, these very simple considerations compared to a fully nonlinear analysis involving contact
constraints, although meaningful as a first approach, fail to answer a series of questions dealing with the
reduction, not to say the disappearance of this phenomenon:
(1)
1O
Structural damping role.

(2)
 Effectiveness of an abradable coating between the blade tips and the outer casing.

(3)
 Influence of the blade design in the occurrence of the phenomenon.

(4)
 Efficiency of intentional mistuning for circumventing this problem by separating mode pairs and, as a

consequence, reducing the amount of energy transferred from one component to the other one.
More generally, a comprehensive modeling, analysis and understanding is of great interest and critical if we
want to isolate the most influential mechanical parameters involved in this interaction phenomenon. Thereby,
our main concern is to develop a numerical predicting tool, fast and reliable, suitable for a better insight and
ultimately able to give answers to the questions listed above.1

3. Structural models

2D models of a bladed disk and a casing used in our numerical tool are presented in the following. In order
to be as much accurate as three-dimensional (3D) models, the design of the structures requires (1) both normal
contact and friction forces treatment between the casing and blade-tips considering a physical law and (2) the
chosen mode shapes of the casing and the bladed disk to geometrically match together. In other words, the
displacement field of both structures must be sufficiently rich to allow for normal and bending displacements
to be a priori independent unknowns [9].

3.1. Bladed disk

The blades are discretized by the usual two-noded Euler–Bernoulli straight beam elements with three
degrees of freedom ublðnÞ, vblðnÞ and gblðnÞ per node. In the vbl-direction, the local shape functions are

N1ðxÞ ¼ 1� 3x2 þ 2x3; N2ðxÞ ¼ lbðx� 2x2 þ x3Þ,

N3ðxÞ ¼ 3x2 � 2x3; N4ðxÞ ¼ lbð�x2 þ x3Þ. (12)

They are linear along ubl and expressed as

M1ðxÞ ¼ 1� x and M2ðxÞ ¼ x; x 2 ½0; 1�. (13)

In a local frame fixed to a rod-beam finite element, the discretized displacement field of the ith element is

ui
blðxÞ ¼M1ðxÞu

i
blðnÞ þM2ðxÞu

iþ1
blðnÞ,

vi
blðxÞ ¼ N1ðxÞv

i
blðnÞ þN2ðxÞgi

blðnÞ þN3ðxÞv
iþ1
blðnÞ þN4ðxÞgiþ1

blðnÞ. (14)

In Fig. 5, a network of linear springs connects the blades together to model the disk. The coupling between the
normal and transversal displacements, respectively ubl and vbl, at the blade tip location is achieved by curving
the geometry of the blades. This represents the cornerstone of our structural modeling. Indeed, a simple
straight blade geometry in its equilibrium position does not meet the second requirement listed above: the
mode shapes in ubl and vbl directions would be fully uncoupled rendering a geometric match between the
k-nodal diameter modes of both the casing and the bladed disk impossible.

Finally, for the sake of simplicity and due to the inherent motion of the bladed disk, all quantities relative to
this structure (mainly displacement vectors and mechanical matrices) are projected onto a polar coordinate
system with unit vectors (erb

; eyb
) rigidly linked to the structure. The displacements of the blade-tip j, initially

located at the point (Rb, y
j
b) where Rb refers to the external radius of the bladed disk, are respectively, denoted
nly a few of them will be considered in this paper.
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by u
j
b along erb

and v
j
b along eyb

as illustrated in Fig. 5. The angle yj
b is defined from exb

rigidly fixed to the first
blade and yields

yj
b ¼

2p
N
ðj � 1Þ; j ¼ 1; . . . ;N. (15)

3.2. Casing

A polar coordinate system with unit vectors eyc
and erc

is assigned to the casing. The latter is discretized
using two-noded curved beam finite elements where both the displacement fields uc and vc (respectively along
eyc

and erc
) are assumed cubic polynomials and involve four degrees of freedom per node: ucðnÞ, ucðnÞ;s, vcðnÞ and

vcðnÞ;s as depicted in Fig. 5. The initial location of the node i is given by the doublet ðRc; y
ðiÞ
c Þ where Rc refers to

the radius of the casing. The shape functions are similar to those of the bladed disk, by replacing x by s and lb

by the length lc of a finite element of the casing in Eq. (12) where s 2 ½0; 1� is the local path variable. This
formulation is taken from Ref. [17] where it is shown that such finite elements are locking free. The discretized
displacement field of element i whose nodes are denoted i and i þ 1 is then

ui
cðsÞ ¼ N1ðsÞu

i
cðnÞ þN2ðsÞu

i
cðnÞ;s þN3ðsÞu

iþ1
cðnÞ þN4ðsÞu

iþ1
cðnÞ;s,

vi
cðsÞ ¼ N1ðsÞv

i
cðnÞ þN2ðsÞv

i
cðnÞ;s þN3ðsÞv

iþ1
cðnÞ þN4ðsÞv

iþ1
cðnÞ;s. (16)

3.3. Modal reduction

In order to focus on a modal interaction, both components are reduced to their respective two k-nodal
diameter vibration modes as shown in Fig. 6. In what follows, M, D and K represent, respectively, the mass,
damping and stiffness matrices coming from the discretization in space and include the bladed disk and the
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Fig. 6. 3-nodal diameter modes of the casing and the bladed disk.
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casing. Their 4� 4 (2� 2 for each structure) modal counterparts are denoted Mm, Dm and Km and related to
each other by

Mm ¼ PTMP with P ¼
Pc 0

0 Pbd

" #
, (17)

where Pc (resp. Pbd) is constituted of the two retained k-nodal diameter modes of the casing (resp. bladed
disk). By noting u the vector storing all the physical displacement components of both structures, an
equivalent expression

u ¼ Pum (18)

holds. In Eq. (18), um ¼ ½u
1
m;c u2

m;c u1
m;b u2

m;b�
T is the modal counterpart of u. It is worth noting that u1

m;b and
u2

m;b are defined with respect to the rotating frame ðexb
; eyb
Þ whereas u1

m;c and u2
m;c are defined with respect to the

frame ðexc
; eyc
Þ.

4. Contact dynamics

4.1. General theory

The contacting forces in the normal and tangential directions exerted by the blade-tips on the
casing and vice versa are of primary interest in this study. Equations of motion are derived using the
Principle of Virtual Work within the kinematically linear framework following, in essence, the procedure
described in Ref. [18].

First, it is convenient to arbitrarily choose one surface subject to contact as the master one so that the
second one, commonly called the slave surface, can be parameterized. It is then possible to find for any
material point x belonging to the master surface GðmÞc , its closest counterpart ȳ on the slave surface GðsÞc

ȳ ¼ argmin
y2GðsÞc

kx� yk, (19)
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where argmin f ðxÞ is the value of x for which the function f ðxÞ reaches its smallest value. According to these
notations, the gap function between the two structures becomes

gðxÞ ¼ g0ðxÞ þ ðu
ðmÞðxÞ � uðsÞðȳðxÞÞÞ � n, (20)

where g0ðxÞ represents the initial positive gap between the two structures and n, the outward normal to GðsÞc .
The contact conditions, referred to as the Kuhn–Tucker optimality conditions in the parlance used in the
literature, take the form

8x 2 GðmÞc ; tNX0; gX0; tNg ¼ 0, (21)

where tN stands for the contact pressure, assumed positive, acting on GðsÞc . To these unilateral contact
conditions, we add the well-known Coulomb friction law

ktTkpmtN ,

ktTkomtN ) vT ¼ 0,

ktTk ¼ mtN ) 9a40 such as vT ¼ a
tT

ktTk
, (22)

for which m is the coefficient of friction, vT , the tangential slip rate and tT , the tangential stress vector. To
enforce the so-called impenetrability condition in a very general way, it is necessary to construct an admissible
contact pressure field CN and its counterpart relative to friction tractions, CT ðtNÞ as

CN ¼ ftN : GðsÞc ! RntNX0g,

CT ðtNÞ ¼ ftT : GðsÞc ! R3ntT � n ¼ 0; ktTkpmtNg. (23)

An alternative equivalent form to Eqs. (21) and (22) is

8sN 2 CN ;

Z
GðsÞc

gðsN � tN ÞdSX0,

8sT 2 CT ðtN Þ;

Z
GðsÞc

vT � ðsT � tT ÞdSX0. (24)

The weak form of the contact problem can be then written in the following manner:
Find the admissible displacement field u such as for all admissible virtual displacement du,Z

O
r€u � dudV þ

Z
O

¯̄s : d¯̄edV ¼

Z
Gs

td � dudS

Z
GðsÞc

ðtNdgþ tT � duT ÞdS þ

Z
O
fd � dudV , (25)

where tN and tT are constrained by conditions (24). The solution of this problem relies on a nonlinear iterative
procedure within which the unknown Lagrange multipliers in the normal and tangential directions will have to
converge, respectively, towards tN and tT .

4.2. Solution method

Once discretized in space using the shape functions described above for u and du, formulation (25) has to be
resolved in time. The question concerning the best compromise for solving a dynamic contact problem
involving friction and deformable bodies is still open. The difficulty of contact problems emanates from the
fact that contact interactions are not only nonlinear but non-smooth as well. On the first hand, a selection has
to be made among implicit time-marching techniques, more reliable and rigorous with respect to equilibrium
at each time step, and explicit procedures more relevant for transient dynamics dealing with high
nonlinearities. On the other hand, the enforcement of the contact constraints has to be tackled by using a
penalty regularization [19] or by employing Lagrange multipliers [20] or a combination of the latter ones, the
Augmented Lagrangian Method [21]. Other formulations can also be identified [22] and various conclusions
concerning their efficiency can be drawn [23]. Consequently, many different computational strategies have
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been developed over the last few years [24]. As a matter of fact, these methods have to combine a continuous
normal evolution of the contact surface with energy momentum conserving algorithms in order to ensure
convergence. In our work, the first task is achieved by choosing curved beam finite elements for discretizing
the casing that guarantees a continuous second derivative of the normal direction. The second task is
completed with the use of the Forward Increment Lagrange Method suggested in Ref. [25] associating
simplicity of implementation with highly accurate and well-behaved solution. The obtained matrix form of
Eq. (25) involving M, D and K, is solved using the explicit central differences scheme. Denoting the time step
by h, vectors in velocity and acceleration take the form, respectively

_un ¼
unþ1 � un�1

2h
and €un ¼

unþ1 � 2un þ un�1

h2
. (26)

The solution method is divided into three steps:
(1)
 Prediction of the displacements unþ1 of the ongoing time-step n by ignoring the contact reactions. These
predicted displacements unþ1;p (with subscript p for prediction) are expressed as

unþ1;p ¼
M

h2
þ

D

2h

� ��1
2M

h2
� K

� �
un þ

D

2h
�

M

h2

� �
un�1 þ Fext

n

� �
. (27)
(2)
 Determination of the gap function vector gnþ1;p between these structures following Eq. (20). A search
algorithm identifies all contactor nodes that have penetrated the target domain. Satisfying the
impenetrability conditions implies that the final gap functions gnþ1 (linearized when necessary) must be
positive or vanish, meaning

gnþ1 ¼ CT
Nunþ1;c þ gnþ1;pX0, (28)

where the corrected displacements unþ1;c are being calculated (with subscript c for correction). CN is the
contact constraint matrix in the normal direction. Eq. (28) is rewritten in an equivalent form

CT
Nunþ1;c þ g�nþ1;p ¼ 0, (29)

where g�nþ1;p ¼ ProjRSg
�
ðgnþ1;pÞ and Sg ¼ sizeðgnþ1;pÞ. In other words, only the negative terms of gnþ1;p,

meaning that a penetration has been detected, are kept in g�nþ1;p in order to calculate the corresponding
corrected displacements unþ1;c.
(3)
 Correction of the displacements through the calculation of normal contact and friction forces (due to high
relative velocities between the casing and the blade-tips, it is assumed that only sliding occurs). It yields the
addition of the unknown Lagrange multipliers k (or identically tN when using this method) in the
governing equations such as

unþ1 ¼ unþ1;p þ unþ1;c

¼ unþ1;p �
M

h2
þ

D

2h

� ��1
CNTk. (30)

The new matrix CNT contains the normal and the pure sliding friction constraints. Using the integral form of
the contact forces Virtual Work (25) and condition ð23Þ3, calculating the terms of the matrix is straightforward.
Ultimately, Eqs. (29) and (30) can be recast in such a form that the Lagrange multipliers are solution of

k ¼ CT
N

M

h2
þ

D

2h

� ��1
CNT

 !�1
g�nþ1;p. (31)
4.3. Contact treatment for modal interaction

Accurately computing the gap distances between the bodies is of utmost importance. The above algorithm
does not give any details about the adopted strategy for the contact detection and the way Eq. (20) is solved.



ARTICLE IN PRESS
M. Legrand et al. / Journal of Sound and Vibration 319 (2009) 366–391 377
In order to make the description of our approach easier, Fig. 7 specifies all the notations used for the
construction of matrices CN and CNT. The master surface is considered to belong to the casing. At each time-
step, the absolute angular positions bj

jj¼1;N of each blade-tip in the polar coordinate system ðerc
; eyc
Þ is

computed

bj
¼ Otn þ yj

b þ
v

j
b

Rb

; j ¼ 1; . . . ;N, (32)

using the following first-order expansion:

arctan
v

j
b

Rb

 !
¼

v
j
b

Rb

þ O
v

j
b

Rb

 !3
0@ 1A. (33)

Subsequently, a preliminary and straightforward pairing procedure establishes the set I ¼ fi;8j 2 ½1;N�;bj �

½yi
c; y

iþ1
c �g that collects the N elements of the casing possibly impacted by the N blade-tips. In essence, it

establishes an implicit relationship between i and j.

4.3.1. Contact in the normal direction

Since all initial angular positions of the nodes of the casing are known in advance, the deduction of
si 2 ½0; 1�, the curvilinear path where the tip of blade j is exactly located is of the form

si ¼
Rc

lc

ðbj
� iðyiþ1

c � yi
cÞÞ; j ¼ 1; . . . ;N. (34)

The contact matrix CN is then built by writing the distances between the two components. First, these
distances depend on the nodal displacements and the shape functions of the casing as depicted in Fig. 7

vi;c
c;nþ1;p ¼ vi

c;nþ1;pðs
iÞ; i 2 I . (35)

They also depend on the displacements of the blade-tips u
j
b;jj¼1;N . Reading Eq. (35), it is possible to process,

during the prediction step, the gap distance that separates blade j from the facing cross-section si of the ith
exc

Ωt

�b

eyc

u b,n+1, p
j

v b,n+1, p
j

gn+1, p
j

vc,n+1, p
i,c

Fig. 7. Initial (- - - -) and current predicted (——) configurations of a part of the bladed disk and casing.



ARTICLE IN PRESS
M. Legrand et al. / Journal of Sound and Vibration 319 (2009) 366–391378
finite element of the casing possibly in contact

g
j
nþ1;p ¼ Rc þ vi;c

c;nþ1;p � Rb � u
j
b;nþ1;p; j ¼ 1; . . . ;N (36)

and the expression of the final gap functions with respect to the corrected displacements

g
j
nþ1 ¼ g

j
nþ1;p þ vi;c

c;nþ1;c � u
j
b;nþ1;c; j ¼ 1; . . . ;N. (37)

When generalized to the entire bladed disk, conditions (37) can be gathered in a matrix form similar to Eq. (28)

gnþ1 ¼ CT
Nunþ1;c þ gnþ1;p. (38)

4.3.2. Friction forces

In normal operating conditions of an aircraft engine, the relative tangential velocity is high enough to
ensure that only sliding contact occurs. Accordingly, it is not required to test the location of the contact forces
with respect to the Coulomb cone. Then, the friction treatment reduces to adding the appropriate forces
during the correction step. It yields the following form for matrices CN and CNT, respectively.

4.4. Final algorithm

The method described above needs a minor modification to handle the modal interaction phenomenon.
Indeed, the contact constraints cannot be treated directly in the chosen modal coordinates of Eq. (17). The
final algorithm has to include an alternating procedure between modal and physical coordinates through
Eq. (18). The displacements of the structures are predicted in the modal coordinates, projected on the physical
coordinates for the contact treatment plus the correction step and finally transformed back to the modal
coordinates for the next time step. Therefore, the general form of the algorithm is as follows:
Input:
- mechanical characteristics of the casing and bladed disk
- h, k, O
- initial conditions
- external loads
for t ¼ ti to tf do

- prediction of the displacements um using the modal counterpart of Eq. (27)
- displacement projection onto the physical coordinates using Eq. (18)
- blade-tips to casing gap distances computation using Eq. (36)
if penetration detected then

- Lagrange multipliers computation
- calculation of friction efforts
- physical displacements correction

end if

- corrected physical displacements projection onto the modal coordinates
- time update

endfor

Output:

- modal displacements of the casing u1
m;c and u2

m;c

- modal displacement of the bladed disk u1
m;b and u2

m;b
5. Modal interaction results

Table 1 sums up the mechanical parameters of our model, adopted in such a way that the eigenfrequencies
of the casing are greater than those of the bladed disk in agreement with Fig. 3.
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Table 1

Characteristics of the model

Casing Bladed disk

Y. modulus (MPa) Ec ¼ 7� 107 Eb ¼ 2:1� 1011

Density ðkgm�3Þ rc ¼ 2800 rb ¼ 7800

Thickness (m) hc ¼ 0:01 hb ¼ 0:01
Width (m) wc ¼ 0:1 wb ¼ 0:1
Radius (m) Rc ¼ 0:4895 Rb ¼ 0:4795
dof nc ¼ 160 nb ¼ 660

Modal damping xc ¼ 0:03 xb ¼ 0:005
Number of blades N ¼ 22
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Fig. 8. Distances between the casing and the N ¼ 22 blade-tips before contact is initiated. The time scale is not of interest. A forward

k-nodal diameter mode is rotating on the casing and a counter-rotating one on the bladed disk. (a) k ¼ 2, 11 curves are distinguishable;

(b) k ¼ 3, 22 curves are distinguishable; (c) k ¼ 4, 11 curves are distinguishable. The number of distinguishable curves shows the symmetry

of the system in terms of future contact locations between the two components versus N and k.
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The contact between the bladed disk and the casing is initiated by a 100ms constant forcing pulse on u1
m;c at

the very beginning of the simulation. During the rest of the simulation no external load is applied. The only
remaining forces are the contact and friction forces, if any.

A study of the modal interaction has been performed. The response of the two structures is analyzed with
respect to the rotational velocity of the engine and the number of possible simultaneous contact points
between the two bodies. It is shown that the type of interaction detected in the simulation can be divided into
two main categories depending on the symmetry of the contact locations as depicted in Fig. 8:
(1)
 N is a multiple of k: the distances (and consequently the contact locations) are equally distributed around
the perimeter of the casing with respect to k, meaning that the number of blade-tips located at the same
distance from the casing equals the chosen number of nodal diameters. This specific situation is depicted in
Fig. 8(a) where the number of distinguishable curves times the number of nodal diameters k equals the
number of blades N.
(2)
 N is not a multiple of k: as shown in Fig. 8(b), the blade-to-casing distances do not generally display an
axi-symmetric pattern in the circumferential direction. Nevertheless, in very specific cases like the one
depicted in Fig. 8(c), for which a symmetric pattern is detected, the gap distances are regularly distributed
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around the circumference but the number of blades possibly in simultaneous contact with the casing is
different from the number of nodal diameters (22=11 ¼ 2 versus k ¼ 4).
As a matter of fact, the difference in behavior versus the ratio N=k resides in the axi-symmetric distribution of
the blades possibly and simultaneously in contact with the outer casing. When the chosen geometry allows for
the system to be perfectly symmetric in terms of N and k, the contact points will remain at the same blade tips
for all times. In the rotating frame rigidly linked to the rotor, the contact and friction forces can be considered
as constant, then explaining the static deformed shape reached by the structure. On the other hand, when N=k

is not an integer, the contact positions will move among the blade-tips and excite, due to friction and
intermittent contact, a counter-rotating mode in the bladed disk, as well as, in agreement with Newton’s third
law, a forward rotating mode in the casing. This observation is reinforced by several numerical simulations
involving different parameter pairs ðN; kÞ like (22, 2), (22, 3), (22, 4) or (24, 3), (24, 4) and (24, 5) for instance.
This behavior is not predicted by the analytical statements.

5.1. N=k is not an integer (N ¼ 22, k ¼ 4)

Under these assumptions, the coupling by means of structural contacts between the two components of the
aircraft engine model exhibits three different types of response in terms of O; the boundaries of the different
system behaviors are defined with respect to a critical velocity denoted Ocn, numerical counterpart of the
theoretical critical velocity Oct, solution of Eq. (11):
(1)
 OoOcn: the response is characterized by several impacts between the two structures at the beginning of the
simulation due to the initial pulse on the casing. They are followed by a decrease of the amplitudes of
vibration to zero stemming from the structural damping as shown in Fig. 9. This case is called ‘‘damped
motion’’.
(2)
 O ’ Ocn: the modal shapes of both structures geometrically match each other and structural contacts with
friction allow for a forward rotating mode in the casing and a backward one in the bladed disk to occur
(Fig. 10). Both structures vibrate close to their own natural frequency yielding an aperiodic (made of two
time (s)
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9. Vibrations of the two modes of the casing for O ¼ 350:2 rad=s (OoOcn): u1m;c ( ) and u2m;c ð Þ. A decaying behavior of the

g is observed due to the presence of structural damping in the model.
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Fig. 10. Vibrations of the two modes of the bladed disk for O ¼ 350:2 rad=s (OoOcn): u1m;b ( ) and u2m;b ð Þ. A decaying behavior

of the bladed disk is observed due to the presence of structural damping in the model.
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Fig. 11. Vibrations of the two modes of the casing for O ¼ 351:4 rad=s (O ’ Ocn): u1
m;c ( ) and u2m;c ð Þ. A forward rotating mode

propagates in the casing.
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incommensurable frequencies oc and obd) limit cycle. The phase shift between the two curves in Fig. 11
plotting the time evolution of the two modes of the casing is an illustration of a wave propagation whose
mathematical expression is given by Eq. (8). This case is called ‘‘sustained motion’’ (Fig. 12).
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Fig. 12. Vibrations of the two modes of the bladed disk for O ¼ 351:4 rad=s (O ’ Ocn): u1m;b ( ) and u2m;b ð Þ. A counter-rotating

mode propagates in the bladed disk.
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Fig. 13. Vibrations of the two modes of the casing for O ¼ 351:8 rad=s (O4Ocn): u1m;c ( ) and u2m;c ð Þ. The amplitudes of vibration

diverge very quickly.
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(3)
 O4Ocn: the behavior of the system is unstable as shown in Fig. 13 for the casing and Fig. 14 for the bladed
disk. The vibration amplitudes become extremely large after about a hundred of rotor rounds. This case is
called ‘‘divergent motion’’.
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Naturally, the vibrations of the bladed disk are consistent with those of the casing. They meet exactly the same
classification: (1) a decaying behavior (see Fig. 10), (2) a sustained motion (see Fig. 12) and (3) a divergent
behavior (see Fig. 14).

Critical velocities Oct and Ocn can be compared for k ¼ 4,

Oct ¼ 343:58 rad=s and Ocn ¼ 351:4 rad=s. (39)

Calculations for k ¼ 3 and 5 have been carried out in order to ensure that the developed algorithm was
predictive. Respective results are given in Fig. 15. This figure shows good agreement between the analytical
approach and the numerical tool even though analytical and numerical values of the critical rotational velocity
are not exactly identical. Moreover, the analytical approach predicts only one dangerous theoretical rotational
velocity whereas the numerical tool predicts a range of rotational velocities for which the interaction becomes
unstable,

OXOcn ’ Oct ¼
oc þ obd

k
. (40)

A very interesting feature of the ‘‘sustained motion’’, which can be seen in Fig. 16, is the intermittent nature of
the contact pattern which is endlessly repeated: the blades are touching the casing one after another (with a
given number of blades simultaneously in contact with the casing) then, the contact is lost until the pattern
starts again. This is conform with the ideal behavior shown in Fig. 4.

5.2. N=k is an integer (N ¼ 22, k ¼ 2)

Under these assumptions, both structures exhibit only two types of response whose description is different
from the previous example since the critical angular velocity Ocn has to be redefined:
(1)
 OoOcn: the response is characterized by several impacts between the two structures at the beginning of the
simulation due to the initial pulse on the casing. They are then followed by a decay of the amplitudes of
vibration to zero stemming from the structural damping.
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Fig. 16. Distances between the casing and blade-tips for N ¼ 22, k ¼ 3 and O ¼ 351:4 rad=s. The intermittent behavior can be observed
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(2)
 OXOcn: after a transient response, a static deformed state of the bladed disk pushes a forward rotating
mode in the casing (see Figs. 17 and 18). Only a few blades remain in permanent contact with the outer
casing as depicted in Fig. 19. During the interaction, the vibrations of the casing are bounded and no
divergent behavior has been found.



ARTICLE IN PRESS

am
pl

itu
de

 (
m

)

time (s)

0.05 0.25

× 10−2

-3

-2

-1

0

1

2

3

0.1 0.15 0.2

Fig. 17. Vibrations of the two modes of the casing for O ¼ 110 rad=s (O4Ocn): u1m;c ( ) and u2m;c ð Þ. A forward rotating mode

starts traveling after 0.14 s of simulation.
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Fig. 18. Vibrations of the two modes of the bladed disk for O ¼ 110 rad=s (O4Oc): u1m;b ( ) and u2m;b ð Þ. They are decaying until a

static deformed state is reached.
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As the bladed disk no longer vibrates when the interaction phenomenon is reached, the critical rotational
velocity is related to the natural frequency of the casing only. Numerically, it can be shown that a case of non-
divergent interaction with permanent contact is reached only if OXOcn where

Ocn ¼
oc

k
. (41)

This series of results highlights the potential of our predicting numerical tool that supplements the presented
analytical approach. It is capable of detecting different, rich motions and limit cycles the system may
experience as well as handling parameter studies on blade curvature, friction coefficient or structural damping
to name a few. As a simple frequency argument, this analytical approach, already introduced in Refs. [7,8],
clearly cannot predict physical behaviors even though it brings a first very important insight of the
phenomenon, the interaction condition.

6. Further results: parameter study

Based on the previous ‘‘nominal’’ results, it is obviously of interest for a manufacturer to draw tendencies
with respect to a set of mechanical parameters considered as crucial. In what follows, a parameter study has
been performed with respect to (1) the reference curvature of the blades and (2) the coefficient of friction m.

6.1. Reference blade curvature

Different curvature configurations shown in Fig. 20, identical for all blades whose reference positions are
illustrated in Fig. 5, have been tested. It is aimed at categorizing possible geometries, favorable or not to the
occurrence of the interaction phenomenon. Firstly, a positive curvature has the unsatisfactory effect of closing
the tip clearance when the blades are excited by the friction forces and leads to instantaneous divergent
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Fig. 20. Classification of the tested blade curvatures from 1% (almost straight) to 100% (highly curved). A blade with positive curvature is

also plotted.
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behaviors, even for low rotational velocities and very soft initial contacts. Secondly, the classification with
negative curvature designs, given in Fig. 21, is more complex. It is worth stating that the original blade design
used in the previous sections is considered here to be the 100% curvature design. Various simulations
performed in the ‘‘curvature, rotational velocity’’ parameter space and thorough examinations of the
numerical solutions allow for drawing the boundaries that separate the different possible motions listed above
for N ¼ 22 and k ¼ 3. It is shown that under a threshold around 40% of curvature, a sustained motion is
impossible. In this zone, a rising O causes a jump directly from a damped motion to a divergent behavior,
which clearly must be avoided. It is also worth noting that above this threshold, the difference between the
theoretical critical speed which naturally evolves with the curvature and the lower boundary of the sustained
motion zone remains constant. This tiny difference confirms the predicting performance of the proposed
method. Moreover, it may be explained by the presence of structural damping and friction in the model which
are not taken into account in the analytical approach.
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6.2. Friction coefficient

As a first estimation, we can legitimately assume that a larger friction coefficient would reduce the
interaction phenomenon by dissipating a larger amount of energy that could transfer from one component to
the other. From Fig. 22, it is apparent that in reality, a larger friction coefficient increases the possibility of
undesirable motions with large amplitudes. Fundamentally, the sustained motion zone tends to be replaced by
a divergent behavior zone with larger friction coefficient. In other words, it indicates that a divergent behavior
is more likely to appear with higher friction coefficients. Finally, the (partial) agreement between the two
presented approaches, underlines the potential threat of the phenomenon of interest. It has to be considered
with attention by aircraft engine manufacturers for flights safety. A safe reduction of the tip clearance is
usually obtained by using an abradable coating laid on the casing [26]. The modeling of such a material
requires a wear law and represents a difficult task. Even though it is beyond the scope of the present paper, it
has to be included in our numerical tool in a future work.
7. Conclusions

The emphasis of the study has been placed on the understanding of the modal interaction caused by direct
contact that may occur between a bladed disk and a casing in an aircraft engine due to the small tip clearance.

A very simple analytical and linear approach is available for obtaining aircraft engine critical velocities in
terms of modal interaction.2 Unfortunately, by neglecting the contact constraints and structural damping
among others, it only furnishes a poor description of the phenomenon. Moreover, it is unable to predict more
complex and purely nonlinear behaviors like the interaction between different nodal diameter modes,
respectively, traveling on the casing (k ¼ 3) and on the bladed-disk (k ¼ 6). Accordingly, a numerical tool is
greatly justified.
2It is understood here that other ‘‘critical velocities’’, due to flutter for instance, are not of interest in the present work.
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The advances given in this paper primarily relate to the structural modeling and treatment of the contact
conditions used in the proposed numerical tool. In order to capture this phenomenon and get interesting and
realistic results, it is necessary (1) to choose a geometric design that couples axial and flexural displacements
and (2) to include friction forces in the contact law in a consistent and accurate manner. In our approach, the
first condition is achieved by curving the blade geometry and the second one, by an explicit time-stepping
procedure in conjunction with the method of Lagrange multipliers where the usual Coulomb’s friction law is
accounted for.

As far as this study shows, a jet engine may experience different kinds of modal interactions
depending on the number and curvature of the blades, the number of nodal diameters of the rotating modes,
the friction coefficient. Under certain conditions, it is also shown that the analytical statements are valuable
for testing the performances of the proposed algorithm and qualitatively consistent with the numerical
method.

Even though the presented 2D numerical tool has proved to be suitable for complex behaviors prediction
and quick parameter studies, it is still very limited compared to full 3D investigations. For instance, recent
blade designs, using forward sweep for performance and stability purposes [27], resemble the positive

curvature geometry introduced in the present 2D numerical tool. Based on the shown results, blade geometries
that tend to close the clearance gap with the casing during interaction lead to quick divergence.
As a consequence, research attention has to be paid to such designs that better satisfy aerodynamic
engineers but may lead to structural failure in case of interaction, depending on the type of mode involved
(flexural or torsional). Solutions to reduce the risk of failure that were not explored in the present paper
have already been suggested, such as intentional mistuning (intentional amount of disorder in the
structures in order to disrupt the existence of nodal diameter rotating modes) [28] or abradable coatings
whose modeling remains a very difficult task. Extension of this tool to examine new issues such as acoustically
coupled resonances [29] may also be considered. Undoubtedly, avenues for future research work are
numerous and should be complemented by thorough experimental studies. Ultimately, the purpose of such a
numerical tool is to be part of a broader design process aimed at optimizing the structures in presence and
reducing the occurrence of this phenomenon. It may also be important to identify the origin(s) of the
differences between the present investigation and Ref. [7], especially in terms of rotational velocities for which
a divergence is detected.
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Appendix A. Vocabulary

A.1. Traveling waves

Some terms specific to flexible structures and rotordynamics may be confusing. Below, we want to clarify
the four following directional terms associated with waves traveling on structures that exhibit axi-symmetry
(including rotationally periodic structures): forward, backward, co-rotating and counter-rotating. For the
sake of simplicity, the counter-clockwise direction is selected as positive. By definition, a forward wave
propagates at speed nf in the positive direction in a stationary frame R0. Consistently, a backward wave
propagates at speed nb in the negative direction (or at speed—nb in the positive direction), meaning
it propagates at nb in a clockwise direction. Consider now a new reference frame R rotating at speed O with
respect to the stationary reference frame R0. The notion of direction has changed. The wave that propagates in
the positive direction with respect to R is said to be corotating at speed nco whereas the one that propagates in
the negative direction is said to be counter-rotating at speed ncr. As drawn in Fig. A.1, a counter-rotating
wave in a rotating structure can be viewed as a forward traveling wave in R0 if OXncr. Depending on the speed
of rotation, the counter-rotating wave can change its direction in the stationary reference frame from
a backward traveling wave at low rotation speeds to a forward traveling wave at higher rotation speeds.
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Fig. A.1. Wave velocity versus rotational velocity diagram explaining directional terms.
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The rotation speed for which the counter-rotating wave is a standing (or stationary) wave in R0 is called
‘‘engine order speed’’.

In this paper, it is assumed that the angular velocity of the rotor is always greater than any traveling wave
velocity. Therefore, only forward waves, either in the casing or the bladed disk, can be observed in R0.

A.2. Rotating modes

The term ‘‘rotating mode’’, while visually conspicuous, is rarely used in the literature except in Ref. [12]. It
expresses the fact that for structures featuring axi-symmetry in general, an eigenanalysis gives rise to k-nodal
diameter double modes (orthogonal modes with similar k-nodal diameter shape and identical frequency) that
can be combined with appropriate time-dependent functions so that they become k-nodal diameter traveling
(rotating) waves. These special waves are named ‘‘rotating modes’’ in the present study.
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